

Regioselective Copper-Catalyzed Amination of Chlorobenzoic Acids: Synthesis and Solid-State Structures of N-Aryl Anthranilic Acid Derivatives

Xuefeng Mei, Adam T. August, and Christian Wolf* Department of Chemistry, Georgetown University, Washington, D.C. 20057

> cw27@georgetown.edu Received September 7, 2005

A chemo- and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of *N*-aryl anthranilic acid derivatives in up to 99% yield. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-*tert*-butylaniline. The conformational isomerism of appropriately substituted *N*-aryl anthranilic acid been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans–anti and unprecedented trans–syn dimeric structures.

Introduction

Cross-coupling reactions resulting in carbon-heteroatom bond formation have received increasing attention in recent years.¹ Significant progress has been reported for Pd-catalyzed amination reactions proceeding with aryl halides under mild conditions.² Alternatively, copper-mediated cross-coupling reactions utilizing anilines,³ amides,⁴ imidazoles,⁵ and other heterocycles,⁶ β -amino alcohols,⁷ and aliphatic amines have also been developed.⁸

Copper-mediated amination of 2-chlorobenzoic acid was first accomplished by Ullmann.⁹ Since then, various efforts to improve the efficiency of this reaction involving the use of ultrasound-assisted methods have been reported.¹⁰ We have

10.1021/jo0518809 CCC: \$33.50 © 2006 American Chemical Society Published on Web 11/25/2005

^{(1) (}a) Lindley, J. *Tetrahedron* **1984**, *40*, 1433–1456. (b) Subramanian, V.; Batchu, V. R.; Barange, D.; Pal, M. J. Org. Chem. **2005**, *70*, 4778–4783. (c) Klapars, A.; Parris, S.; Anderson, K. W.; Buchwald, S. L. J. Am. Chem. Soc. **2004**, *126*, 3529–3533. (d) Beletskaya, I. P.; Bessmertnykh, A. G.; Averin, A. D.; Denat, F.; Guilard, R. Eur. J. Org. Chem. **2005**, 281–305.

^{(2) (}a) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1998, 120, 7369-7370. (b) Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar-Roman, L. M. J. Org. Chem. 1999, 64, 5575-5580. (c) Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 1997, 62, 6066-6068. (d) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722-9723. (e) Hartwig, J. F. Angew. Chem., Int. Ed. Engl. 1998, 37, 2046-2067. (f) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805-818.

^{(3) (}a) Gajare, A. S.; Toyota, K.; Yoshifuji, M.; Ozawa, F. *Chem. Commun.* **2004**, 1994–1995. (b) Ferreira, I. C. F. R.; Queiroz, M.-J. R. P.; Kirsch, G. *Tetrahedron* **2002**, *58*, 7943–7949. (c) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. *Org. Lett.* **2001**, *42*, 4791–4793. (d) Goodbrand, H. B.; Hu, N.-X. J. Org. Chem. **1999**, *64*, 670–674.

⁽⁴⁾ Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421-7428.

^{(5) (}a) Son, S. U.; Park, I. K.; Park, J.; Hyeon, T. *Chem. Commun.* **2004**, 778–779. (b) Choudary, B. M.; Sridhar, C.; Kantam, M. L.; Venkanna, G. T.; Sreedhar, B. *J. Am. Chem. Soc.* **2005**, *127*, 9948–9949.

^{(6) (}a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. **2001**, *123*, 7727–7729. (b) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. **2005**, *70*, 5164–5173.

⁽⁷⁾ Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 3703-3706.

FIGURE 1. Structures of anthranilic acid derivatives used as NSAIDs and for the treatment of amyloidogenic diseases.

recently described a copper-catalyzed amination protocol for the synthesis of substituted N-aryl anthranilic acids, which were further utilized as precursors for ring construction of 9-chloroand 9-bromoacridines.¹¹ N-Aryl anthranilic acids, such as flufenamic and mefenamic acid, are important nonsteroidal antiinflammatory drugs (NSAIDs) and promising candidates for the therapy of neurodegenerative and amyloid diseases (Figure 1).¹² They are also important precursors for the synthesis of substituted acridines which have been used as antimalarial and anticancer drugs.¹³ Buchwald et al. developed an effective Pdcatalyzed amination procedure that is applicable to aryl chlorides with free carboxylic acid groups in the meta or para position.¹⁴ A complementary copper-catalyzed amination reaction that proceeds with ortho-chlorobenzoic acid, albeit with only moderate yields, has been reported.¹⁵ As a result, N-aryl anthranilic acid derivatives are usually prepared through the Ullmann-Jourdan reaction or the Buchwald-Hartwig amination with alkyl 2-iodobenzoates and subsequent hydrolysis.¹⁶ We wish to report a general synthetic procedure providing substituted N-aryl anthranilic acids in high to excellent yields via Cu-catalyzed amination of ortho-chlorobenzoic acids. Through isothermal

(9) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382-2384.

(10) (a) Hanoun, J. P.; Tensglia, A. Synth. Commun. 1995, 25, 2443–2448. (b) Docampo Palacios, M. L.; Pellon Comdom, R. F. Synth. Commun. 2003, 33, 1771–1775.

(11) (a) Wolf, C.; Mei, X. J. Am. Chem. Soc. 2003, 125, 10651-10658.
(b) Mei, X.; Wolf, C. J. Org. Chem. 2005, 70, 2299-2305. (c) Mei, X.; Wolf, C. J. Am. Chem. Soc. 2004, 126, 14736-14737. (d) Mei, X.; Wolf, C. Chem. Commun. 2004, 2078-2079.

(12) (a) Oza, V. B.; Petrassi, H. M.; Purkey, H. E.; Kelly, J. W. Bioorg. Med. Chem. Lett. **1999**, 9, 1–6. (b) Green, N. S.; Palaninathan, S. K.; Sacchettini, J. C.; Kelly, J. W. J. Am. Chem. Soc. **2003**, 125, 13404–13414.
(c) Oza, V. B.; Smith, C.; Raman, B.; Koepf, E. K.; Lashuel, H. A.; Petrassi, H. M.; Chiang, K. P.; Powers, E. T.; Sachettinni, J.; Kelly, J. W. J. Med. Chem. **2002**, 45, 321–332. (d) Baures, P. W.; Oza, V. B.; Peterson, S. A.; Kelly, J. W. Bioorg. Med. Chem. **1999**, 7, 1339–1347. (e) Klabunde, T.; Petrassi, H. M.; Oza, V. B.; Raman, P.; Kelly, J. W.; Saccettini, J. C. Nat. Struct. Biol. **2000**, 7, 312–321.

(13) (a) Girault, S.; Grellier, P.; Berecibar, A.; Maes, L.; Mouray, E.; Lemiere, P.; Debeu, M.-A.; Davioud-Charvet, E.; Sergheraert, C. J. Med. Chem. 2000, 43, 2646–4654. (b) Demeunynck, M.; Charmantray, F.; Martelli, A. Curr. Pharm. Des. 2001, 7, 1703–1724. (c) Brana, M. F.; Cacho, M.; De Pascual-Teresa, B.; Ramos, A. Curr. Pharm. Des. 2001, 7, 1745–1780. (d) Cain, B. F.; Seelye, R. N.; Atwee, G. J. J. Med. Chem. 1974, 17, 922–928.

(14) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653–6655.

(15) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4, 581–584.

(16) Csuk, R.; Barthel, A.; Raschke, C. Tetrahedron 2004, 60, 5737–5750.

TABLE 1. Copper-Catalyzed Amination of 2-Chlorobenzoic Acida

	H_{+} H_2N I	Cu(I)	COOH NH 3
	catalyst	reaction	yield
entry	(mol %)	time (h)	(%) ^b
1	CuI (4)	24	55
2	$Cu_2O(4)$	24	56
3	Cu (9)	24	55
4	Cu (9), CuI (4)	24	51
5	Cu (9), Cu ₂ O (4)	24	76
6	Cu (12), Cu ₂ O (4)	5	66
7	Cu (9), Cu ₂ O (4)	5	71
8	Cu (6), Cu ₂ O (4)	5	51
9	Cu (4), Cu ₂ O (4)	5	51

^{*a*} Reaction conditions: 2-chlorobenzoic acid (1.38 g, 8.83 mmol), 1.05 equiv of 2-methylaniline, and 2.0 equiv of potassium carbonate in 3 mL of 2-ethoxyethanol at 130°C. ^{*b*} Isolated yields.

evaporation, we were able to obtain single crystals of a series of *N*-aryl anthranilic acid derivatives. Crystallographic analysis revealed two distinctive packing motifs exhibiting either a syn or an anti arrangement of anthranilic acid dimers which are stabilized by two centrosymmetric $C=O\cdots H-O$ hydrogen bonds. The unprecedented interdependence of the dimeric arrangement and crystal structure of substituted anthranilic acids is closely related to supramolecular conformational isomerism.

Results and Discussion

For the initial screening of suitable reaction conditions, we decided to study the formation of *N*-(2-methylphenyl)anthranilic acid, **3**, from 2-chlorobenzoic acid, **1**, and 2-methylaniline, **2**, through copper-catalyzed amination using potassium carbonate as the base and 2-ethoxyethanol as solvent. The desired anthranilic acid **3** was obtained in moderate yields with catalytic amounts of CuI, Cu₂O, or Cu (Table 1, entries 1-3). However, results improved significantly in the presence of both Cu and Cu₂O, and **3** was produced in 71% and 76% yields after 5 and 24 h, respectively (Table 1, entries 5 and 7). Variation of the Cu/Cu₂O ratio and replacement of Cu₂O by CuI did not further increase the yields (Table 1, entries 4 and 6–9).

We then decided to study the effect of solvent and base on the amination reaction. Anthranilic acid 3 was obtained in 75% and 76% yields, respectively, using Cu/Cu₂O as the catalyst in n-butanol or 2-ethoxyethanol in the presence of two equivalents of potassium carbonate, whereas only poor yields were obtained in water and ethylene glycol (Table 2, entries 1-4). We were pleased to find that yields of 3 could be enhanced to 90% when diethylene glycol or 2-ethoxyethanol was used as the solvent (Table 2, entries 5 and 12). The Cu/Cu₂O-catalyzed amination of 2-chlorobenzoic acid proved to depend significantly on the base employed. Comparison of the results obtained with Na₂-CO₃, Cs₂CO₃, K₃PO₄, NaOAc, tert-BuOK, and 2,2,6,6-tetramethylpiperidine (TMP) shows that yields of 3 obtained in diethylene glycol vary from 5 to 90% (Table 2, entries 5-11). We found that anthranilic acid **3** was produced in only 5-30%yields in the presence of cesium carbonate, 2,2,6,6-tetramethylpiperidine, and tert-BuOK (Table 2, entries 6, 8, and 11). By contrast, anthranilic acid 3 was formed in 90% and 82% yields through Cu/Cu₂O-catalyzed amination of 1 with 2 using

^{(8) (}a) Okano, K.; Tokuyama, H.; Fukuyama, T. Org. Lett. **2003**, 5, 4987–4990. (b) Kwong, F. Y.; Buchwald, S. L. Org. Lett. **2003**, 5, 793–796. (c) Ma, D.; Cai, Q.; Zhang, H. Org. Lett. **2003**, 5, 2453–2455. (d) Lu, Z.; Twieg, R. J.; Huang, S. D. Tetrahedron. Lett. **2003**, 44, 6289–6292. (e) Maes, B. U. W.; Loones, K. T. J.; Hostyn, S.; Diels, G.; Rombouts, G. Tetrahedron **2004**, 60, 11559–11564. (f) Ezquerra, J.; Pedregal, C.; Lamas, C.; Barluenga, J.; Perez, M.; Garcia-Martin, M. A.; Gonzalez, J. M. J. Org. Chem. **1996**, 61, 5804–5812. (g) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Zappia, G. Org. Lett. **2001**, 3, 2539–2541. (h) Artamkina, G. A.; Sergeev, A. G.; Beletskaya, I. P. Tetrahedron Lett. **2001**, 42, 4381–4394.

^{*a*} Reaction conditions: 2-chlorobenzoic acid (1.38 g, 8.83 mmol), 1.05 equiv of 2-methylaniline, 9 mol % of Cu, 4 mol % of Cu₂O, 2.0 equiv of base, and 3 mL of solvents, at 130°C for 24 h. ^{*b*} Isolated yields. ^{*c*} Aniline was used. ^{*d*} 1.0 equiv of base was used.

 K_2CO_3 or Na_2CO_3 in diethylene glycol (Table 2, entries 5 and 7). We also observed that the amination proceeds with excellent yields with one equivalent of sodium or potassium carbonate in 2-ethoxyethanol (Table 2, entries 12–14).

The copper-catalyzed C-N bond formation procedure was then applied to a variety of aryl amines and chlorobenzoic acids to produce a series of N-arylanthranilic acids (Table 3). We found that the presence of one bulky ortho substituent does not impede effective amination (Table 3, entries 2-5). For example, 2-tert-butylaniline, 8, and 2-phenylaniline, 10, gave N-(2-tertbutylphenyl)anthranilic acid, 9, in 86% yield and N-(2-biphenyl)anthranilic acid, 11, in 85% yield (Table 3, entries 4 and 5). Incorporation of two ortho substituents to aniline, however, was found to decrease yields; e.g., N-(2,6-dimethylphenyl)anthranilic acid, 13, was obtained in only 65% yield (Table 3, entry 6). Coupling of 1-aminonaphthalene or 1-aminopyrene gave the corresponding products 21 and 23 in 96% and 73% yields (Table 3, entries 10 and 11). Importantly, no significant electronic effects were observed in the reaction of substituted anilines and chlorobenzoic acids. For example, amination of 1 with 4-methoxyaniline, 24, and 4-nitroaniline, 26, proceeded with 84% and 87% yields, respectively, and electron-deficient chlorobenzoic acid 32 gave anthranilic acid 33 in 99% yield (Table 3, entries 12, 13, and 16). The copper-catalyzed amination was found to proceed with high regio- and chemoselectivity. Amination only occurs when the halide is located in ortho position to the carboxylic acid moiety. For example, coupling of 2,4-dichlorobenzoic acid, 34, with 4-methoxyaniline, 24, gave anthranilic acid 35 in 86% yield and amination of 5-bromo-2-chlorobenzoic acid, 36, produced 37 in 85% yield (Table 3, entries 17 and 18). Aryl halide bonds located in the aniline moiety are also not affected. The coupling reaction between 2-chlorobenzoic acid and 3-chloroaniline, 28, gave 29 in 99% yield (Table 3, entry 14). The ortho carboxylate group has been known to effectively accelerate homogeneous copper-catalyzed exchange reactions.¹⁷ Accordingly, our amination procedure affords high regioselectivity and tolerates various functionalities thus comple-

(17) Couture, C.; Paine, A. J. Can. J. Chem. 1985, 63, 111-120.

TABLE 3. Arylation of Aryl Chlorides with Aryl Amines^a

^{*a*} Reaction conditions: 2-chlorobenzoic acid (1.38 g, 8.83 mmol), 1.05 equiv of amine, 1.0 equiv of K₂CO₃, 9 mol % of Cu, 4 mol % of Cu₂O, and 3 mL of 2-ethoxyethanol at 130°C for 24 h. ^{*b*} Isolated yields. ^{*c*} Na₂CO₃ was used as base. ^{*d*} 2.0 equiv of base were used.

menting other methods that allow effective amination of *meta*and *para*-chlorobenzoic acids.

FIGURE 2. Possible arrangements of dimers of 3.

Carboxylic acids are known to form centrosymmetric dimers in solution and in the solid state to minimize the overall dipole moment.¹⁸ In the case of substituted *N*-aryl anthranilic acids, dimer formation could lead to two geometrical arrangements isolable in the solid state, namely cis and probably favored trans isomers exhibiting the *N*-aryl substituents on the same or opposite sides. In addition, both trans and cis isomers could exhibit either syn or anti orientation having substituted *N*-aryl groups either pointing up or down relative to the anthranilic plane, as shown for *N*-(2-methylphenyl)anthranilic acid, **3** (Figure 2).

Supramolecular isomerism has been defined as the existence of different types of crystal architectures produced from the same molecular building blocks and is closely related to molecular isomerism and polymorphism.¹⁹ The desire to understand and rationally design solid-state structures has resulted in remarkable advances in crystal engineering and supramolecular synthesis.²⁰ The possibility of four isomeric dimeric structures of anthranilic acids has led us to the study of solid-state conformational isomerism. We therefore employed appropriately substituted anthranilic acids 3, 7, 9, 11, 15, 17, 19, 21, and 29 in crystallization experiments. Through isothermal evaporation from methylene chloride solutions, we were able to grow single crystals of seven anthranilic acids (Figure 3). Anthranilic acids 3 and 11 formed monoclinic systems, and the others gave triclinic crystals (Table 4). As expected, dimeric N-arylanthranilic acid structures were obtained in all cases. The dimeric arrangements of 3, 7, 9, 11, and 15 are of the centrosymmetric trans-anti type. A pair of C=O····H-O hydrogen bonds and C=O···H-N hydrogen forces both anthranilic rings into the same plane. The unit cell of the single crystal of **3** contains eight molecules forming four centrosymmetric dimers (Figure 4). Through a Cambridge Structural Database (CSD) search, we found five additional *N*-phenylanthranilic acid derivatives showing acid dimers with the same trans-anti arrangement in the solid state.²¹

The dihedral angle, α , between the 2-methylphenyl moiety and the anthranilic ring of **3** was determined as 49.1° (Figure 5). Changing the ortho substituent from methyl to *iso*-propyl, *tert*-butyl, and phenyl did not affect the supramolecular architecture and molecular isomerism. However, the dihedral angle, α , was found to change from 49.1° (**3**) to 62.5° (**7**), 62.8° (**9**), and 77.1° (**11**) (Figure 5). Although the dihedral angle increases with the bulkiness of the ortho substituent, the almost perpendicular arrangement of the phenyl group is stabilized by additional $\pi - \pi$ interactions between adjacent dimers (Supporting Information).

The trans—anti dimers of **3**, **7**, **11**, and **15** show onedimensional $\pi - \pi$ interactions between the anthranilic aromatic rings (Figure 6). Anthranilic acid **3** formed π -stacking rods with a closest-contact distance of 3.46 Å. Anthranilic acids **7**, **11**, and **15** have a similar packing arrangement, and the corresponding closest-contact distance was determined as 3.50, 3.40, and 3.46 Å, respectively. However, the bulky *tert*-butyl group of anthranilic **9** impedes effective π -stacking which is replaced by van der Waals interactions (Supporting Information).

Surprisingly, anthranilic acids 17 and 19 crystallized as noncentrosymmetric trans-syn dimers (Figure 5). The conformational isomerism is accompanied by a quite distinct crystal architecture. In contrast to the formation of π -stacking rods observed with anthranilic acids 3, 7, 11, and 15, the crystals of 17 and 19 show one-dimensional chains stabilized by $\pi - \pi$ interactions between the tert-butylphenyl and 3,5-dimethylbiphenyl rings, respectively. For example, the solid-state structure of anthranilic acid 17 has a closest-contact distance between the *tert*-butylphenyl rings of 3.48 Å (Figure 7). The π -stacking of the trans-syn dimers results in infinite chains along the b-axis. Empty space within one chain is filled with a complementary chain, thus providing one-dimensional intertwined rods. The unexpected solid-state structures of the anthranilic acids studied resemble supramolecular conformational isomerism. Although the crystal structures of acids 3, 7, 9, 11, and 15 show a previously reported packing motif exhibiting trans-anti dimers, anthranilic acids 17 and 19 crystallized as dimeric

FIGURE 3. Structures of N-phenylanthranilic acid derivatives employed in single-crystal analysis.

FIGURE 4. ORTEP perspectives of anthranilic acid derivatives (a) *N*-(2-methylphenyl)anthranilic acid **3** and (b) *N*-(3-*tert*-butylphenyl)anthranilic acid **17**. Selected interatomic distances (Å) and angles (deg): (a) $O(1)\cdots O(2) = 2.224$, $N(1)\cdots O(1) = 2.636$, $O(2)-H(2')\cdots O(1) = 172.79$, $N(1)-H(1)\cdots O(1) = 138.32$ and (b) $O(1)\cdots O(3) = 2.643$, $O(2)\cdots O(4) = 2.707$, $N(1)\cdots O(2) = 2.733$, $N(2)\cdots O(3) = 2.692$, $O(4)-H(4O)\cdots O(2) = 164.42$, $N(1)-H(1)\cdots O(2) = 132.77$.

TABLE 4. Crystallographic Parameters of Anthranilic Acid Derivatives

compound name	3	7	9	11	15	17	19
formula	C14H13NO2	C ₁₆ H ₁₇ NO ₂	C17H19NO2	C ₁₉ H ₁₅ NO ₂	C ₁₄ H ₁₃ NO ₂	C17H19NO2	C ₂₁ H ₁₉ NO ₂
mol wt	227.25	255.31	269.33	289.32	227.25	269.33	317.37
temp (K)	173	183	173	183	173	163	173
system	monoclinic	triclinic	triclinic	monoclinic	triclinic	triclinic	triclinic
space group	C2/c	$P\overline{1}$	$P\overline{1}$	$P2_{1}/c$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$
a (Å)	11.7804(16)	7.4585(10)	7.4748(12)	5.7231(8)	4.6299(14)	10.9634(7)	10.5769(16)
b (Å)	7.4503(10)	7.5891(10)	9.3856(15)	17.929(2)	8.332(2)	11.7048(7)	11.4108(17)
<i>c</i> (Å)	26.627(3)	13.6653(19)	11.0319(17)	14.4300(19)	15.336(4)	22.9688(14)	14.162(2)
α (deg)	90	79.998(2)	106.582(3).	90	98.466(4)	88.8990(10)	80.856(3)
β (deg)	100.168(2)	85.875(2)	91.207(3)	101.064(2)	92.198(4)	89.0970(10)	82.334(3)
γ (deg)	90	62.141(2)	99.212(3)	90	101.337(4)	82.0050(10)	84.982(3)
$V(Å^3)$	2300.3(5)	673.42(16)	730.4(2)	1453.2(3)	572.3(3)	2918.0(3)	1668.5(4)
Ζ	8	2	2	4	2	8	4
ρ (g/cm ³)	1.312	1.259	1.225	1.322	1.319	1.226	1.263
θ range (deg)	1.55 - 27.99	1.51 - 27.99	1.93 - 28.00	1.83-27.99	2.52 - 28.00	1.76 - 28.00	1.95 - 27.99
index ranges	$-15 \le h \le 15$	$-9 \le h \le 9$	$-9 \le h \le 9$	$-7 \le h \le 7$	$-76 \le h \le 6$	$-14 \le h \le 14$	$-13 \le h \le 13$
	$-9 \le k \le 9$	$-9 \le k \le 10$	$-12 \le k \le 12$	$-23 \le k \le 22$	$-10 \le k \le 11$	$-15 \le k \le 15$	$-14 \le k \le 14$
	$-35 \le l \le 34$	$-17 \le l \le 18$	$-14 \le l \le 14$	$-18 \le l \le 19$	$-20 \le l \le 19$	$-30 \le l \le 29$	$-18 \le l \le 18$
reflns collected	9959	6018	6614	12467	4861	25329	14927
unique reflns	2714	3054	3338	3401	2552	13122	7547
R(int)	0.0410	0.0282	0.0231	0.0430	0.0211	0.0345	0.0309
refined params	155	174	192	199	155	733	445
GOF on F^2	1.020	0.914	1.060	1.027	0.980	1.045	1.032
$R_1 \left[I > 2\sigma(I) \right]$	0.0483	0.0462	0.0414	0.0463	0.0442	0.0618	0.0460
wR2 (all data)	0.1409	0.1228	0.1073	0.1127	0.1140	0.2060	0.1154

trans-syn conformers providing an unprecedented supramolecular architecture.

Conclusion

We have developed a highly regioselective Cu/Cu₂Ocatalyzed cross-coupling reaction for effective C–N bond formation with 2-chlorobenzoic acids and aniline derivatives. The reaction complements existing methods, tolerates a variety of functional groups, and gives high to excellent yields with both electron-deficient and electron-rich reagents. Crystallographic analysis of seven substituted *N*-aryl anthranilic acids showed two distinct supramolecular structures due to formation of trans–anti and trans–syn dimers in the solid state.

Experimental Section

General Procedure for the Cu-Catalyzed Amination of Aryl Halides. A mixture of aniline (9.30 mmol), aryl halide (8.83 mmol), K₂CO₃ (8.83 mmol), Cu powder (0.78 mmol), and Cu₂O (0.35 mmol) in 3 mL of 2-ethoxyethanol was refluxed at 130°C under inert atmosphere for 24 h. The cooled reaction mixture was poured into 30 mL of water. Charcoal was then added, and the solution was filtered through Celite. The crude product was obtained by precipitation upon acidification of the filtrate with diluted HCl. The residue was dissolved in 100 mL of 5% aqueous Na₂CO₃ solution and filtered through Celite, and the final product was isolated by precipitation upon careful pH adjustment.

⁽¹⁸⁾ Desiraju, G. R. Angew. Chem., Int. Ed. Engl. 1995, 34, 2311–2327.
(19) (a) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629–1658. (b) Swift, J. A.; Pivovar, A. M.; Reynolds, A. M.; Ward, M. D. J. Am. Chem. Soc. 1998, 120, 5887–5894.

^{(20) (}a) Desiraju, G. R. Crystal Engineering: The Design of Organic Solids; Elsevier: Amsterdam, 1989. (b) Reddy, D. S.; Craig, D. C.; Desiraju, G. R. J. Am. Chem. Soc. **1996**, 118, 4090–4093. (c) Desiraju, G. R. Acc. Chem. Res. **2002**, 35, 565–573. (d) Gavezzotti, A. Acc. Chem. Res. **1994**, 27, 309–314.

⁽²¹⁾ N-(2-Methoxyphenyl)anthranilic acid, N-(2-carboxyphenyl)anthranilic acid, N-(2'-carboxy-5'-chlorophenyl)-4-chloroanthranilic acid, N-(2methyl-3-chlorophenyl)anthranilic acid, and N-(3-methyl-2,6-dichlorophenyl)anthranilic acid.

FIGURE 5. X-ray crystal structures of anthranilic acids 3, 7, 9, 11, 15, 17, and 19 exhibiting trans-anti (left) and trans-syn (right) dimeric conformations.

FIGURE 6. One-dimensional π -stacking of anthranilic acid **3** (top) and schematic illustration of the trans—anti dimers and packing motif (bottom).

N-(2-Methylphenyl)anthranilic Acid (3).^{12a} Compound 3 was obtained from 2-chlorobenzoic acid, 1, and 2-methylaniline, 2, as an off-white powder in 92% yield. ¹H NMR (300 MHz, CDCl₃) δ = 2.29 (s, 3H), 6.72 (bs, 1H), 6.85 (d, *J* = 8.2 Hz, 1H), 7.12 (dd, *J* = 7.2 Hz, 7.4 Hz, 1H), 7.20–7.34 (m, 5H), 8.05 (d, *J* = 7.2 Hz,

1H), 9.18 (bs, 1H). ¹³C NMR (75 MHz, DMSO- d_6) δ = 17.6, 113.4, 116.9, 122.6, 124.0, 126.6, 130.9, 131.3, 134.0, 138.7, 148.6.

N-Phenylanthranilic Acid (5).²² Anthranilic acid 5 was obtained from 2-chlorobenzoic acid, 1, and aniline, 4, as a white solid in 83% yield. ¹H NMR (300 MHz, CDCl₃) $\delta = 6.75$ (dd, J = 7.9 Hz, 8.3 Hz, 1H), 7.13 (dd, J = 7.3 Hz, 8.6 Hz, 1H), 7.20–7.50 (m, 5H), 8.05 (d, J = 7.6 Hz, 1H), 9.33 (bs, 1H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 111.0, 114.7, 117.8, 123.8, 124.7, 130.0, 133.2, 135.8,$ 140.9, 149.5, 174.3.

N-(2-Isopropylphenyl)anthranilic Acid (7).^{12a} Amination of 2-chlorobenzoic acid, 1, and 2-isopropylaniline, 6, gave anthranilic acid 7 as a white powder in 73% yield. ¹H NMR (300 MHz, CDCl₃) $\delta = 1.22$ (d, J = 6.9 Hz, 6H), 3.21 (sept, J = 6.9 Hz, 1H), 4.68 (bs, 1H), 6.68 (dd, J = 7.2 Hz, 7.4 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 7.22–7.40 (m, 4H), 8.1 (dd, J = 1.7 Hz, 8.2 Hz, 1H), 9.18 (bs, 1H).¹³C NMR (75 MHz, DMSO- d_6): $\delta = 23.6$, 28.4, 112.0, 113.6, 117.0, 125.7, 126.1, 127.1, 127.3, 132.5. 135.0, 137.9, 143.6, 149.8, 171.0.

N-(2-*tert*-Butylphenyl)anthranilic Acid (9).²³ Anthranilic acid 9 was produced from 2-chlorobenzoic acid, 1, and 2-*tert*-butylaniline, 8, as white crystals in 86% yield. ¹H NMR (300 MHz, CDCl₃) δ = 1.41 (s, 9H), 6.65 (dd, *J* = 7.0 Hz, 7.9 Hz, 1H), 7.15 (d, *J* = 8.6 Hz, 1H), 7.17–7.28 (m, 4H), 7.47–7.50 (m, 1H), 8.02 (d, *J* = 8.1 Hz, 1H), 9.21 (bs, 1H). ¹³C NMR (75 MHz, CDCl₃) δ

⁽²²⁾ Scherrer, R. A.; Beatty, H. R. J. Org. Chem. 1980, 45, 2127–2131.
(23) Denny, W. A.; Twigden, S. J.; Baguley, B. C. Anti-Cancer Drug Des. 1986, 1, 125–132.

FIGURE 7. Formation of intertwined rods in the crystal structure of anthranilic acid 17 (top) and schematic illustration of the packing of the trans-syn dimers (bottom).

= 31.3, 35.7, 110.0, 114.8, 116.7, 126.6, 127.6, 128.1, 129.8, 133.1, 135.9, 139.4, 147.1, 151.4, 173.7.

N-(2-Biphenyl)anthranilic Acid (11).²⁴ Acid 11 was obtained from 2-chlorobenzoic acid, 1, and 2-aminobiphenyl, 10, as a white solid in 85% yield. ¹H NMR (300 MHz, CDCl₃) δ = 4.74 (bs, 1H), 6.72 (dd, *J* = 7.2 Hz, 7.7 Hz, 1H), 7.20–7.52 (m, 11H), 7.94 (d, *J* = 8.3 Hz, 1H), 9.18 (bs, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 111.4, 114.7, 117.7, 123.7, 124.8, 128.0, 128.6, 129.0, 129.7, 131.7, 133.1, 135.6, 136.9, 138.2, 139.5, 149.3, 174.2.

N-(2,6-Dimethylphenyl)anthranilic Acid (13).²⁵ Amination of 2-chlorobenzoic acid, 1, and 2,6-dimethylaniline, 12, afforded acid 13 as a white powder in 65% yield. ¹H NMR (300 MHz, CDCl₃) $\delta = 2.21$ (s, 6H), 6.22 (d, J = 8.5 Hz, 1H), 6.66 (dd, J = 7.1 Hz, 7.1 Hz, 1H), 7.10–7.20 (m, 3H), 7.24 (dd, J = 7.6 Hz, 7.8 Hz, 1H), 8.04 (d, J = 7.6 Hz, 1H), 8.88 (bs, 1H). ¹³C NMR (75 MHz, CD₃OD) $\delta = 18.5$, 112.0, 115.7, 126.3, 128.3, 132.8, 134.1, 135.6, 135.9, 137.0, 149.9, 173.8.

N-(3-Methylphenyl)anthranilic Acid (15).²⁵ Compound 15 was obtained from 2-chlorobenzoic acid, 1, and 3-methylaniline, 14, as a white solid in 80% yield. ¹H NMR (300 MHz, CDCl₃) $\delta = 2.39$ (s, 3H), 6.79 (bs, 1H), 6.97 (d, J = 7.31 Hz, 1H), 7.00–7.15 (m, 2H), 7.25–7.30 (m, 2H), 7.38 (m, 1H), 8.10 (m, 1H), 9.25 (bs, 1H). ¹³C NMR (75 MHz, DMSO- d_6) $\delta = 21.0$, 113.9, 117.3, 118.3, 122.0, 123.8, 129.2, 132.5, 134.0, 138.9, 140.5, 147.5.

N-(3-*tert*-Butylphenyl)anthranilic Acid (17). Acid 17 was produced by amination of 2-chlorobenzoic acid, 1, and 3-*tert*butylaniline, 16, as a white solid in 85% yield. ¹H NMR (300 MHz, CDCl₃) $\delta = 1.34$ (s, 9H), 6.74 (dd, J = 0.7 Hz, 7.4 Hz, 1H), 7.10 (d, J = 7.3 Hz, 1H), 7.16–7.37 (m, 5H), 8.05 (dd, J = 1.5 Hz, 8.1 Hz, 1H), 9.29 (bs, 1H). ¹³C NMR (75 MHz, DMSO- d_6) $\delta = 31.0$, 34.4, 112.4, 113.5, 117.2, 118.7, 118.9, 120.3, 129.0, 132.0, 134.1, 140.1, 147.4, 152.2, 170.1. Anal. Calcd for C₁₇H₂₀ClNO₂: C, 66.77; H, 6.59; N, 4.58. Found: C, 67.27; H, 7.16; N, 4.93. (The HCl salt was formed by addition of hydrogen chloride (diethyl ether, 2.0 M) for elemental analysis.)

N-[3-(3',5'-Dimethylbiphenyl)]anthranilic Acid (19).²⁶ Anthranilic acid 19 was obtained from 2-chlorobenzoic acid, 1, and 3-amino-3',5'-dimethylbiphenyl, 18, as an off-white solid in 99% yield. ¹H NMR (300 MHz, CDCl₃) $\delta = 2.39$ (s, 6H), 4.43 (s, 2H), 6.77 (dd, J = 7.1 Hz, 7.6 Hz, 1H), 7.02 (s, 1H), 7.22–7.50 (m, 8H), 8.06 (d, J = 8.0 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) $\delta =$ 21.7, 113.7, 114.4, 115.9, 117.5, 121.9, 122.1, 123.1, 125.2, 128.7, 129.3, 129.8, 133.9, 135.3, 138.5, 140.9, 143.0, 149.1. Anal. Calcd for C₂₁H₁₉NO₂: C, 79.50; H, 5.99; N, 4.42. Found: C, 79.10; H, 6.23; N, 4.32.

N-(1-Naphthyl)anthranilic Acid (21).²⁷ Anthranilic acid 21 was obtained from 2-chlorobenzoic acid, 1, and 1-aminonaphthalene,

(25) Thilo, D.; Von Kaulla, K. N. J. Med. Chem. 1970, 13, 503-510.
(26) Dokorou, V.; Demertzis, M. A.; Jasinski, J. P.; Kovala-Demertzi, D. J. Organomet. Chem. 2004, 689, 317-325.

(27) Szczepankiewicz, B. G.; Liu, G.; Hajduk, P. J.; Abad-Zapatero, C.; Pei, Z.; Xin, Z.; Lubben, T. H.; Trevillyan, J. M.; Stashko, M. A.; Ballaron, S. J.; Liang, H.; Huang, F.; Hutchins, C. W.; Fesik, S. W.; Jirousek, M. R. *J. Am. Chem. Soc.* **2003**, *125*, 4087–4096. **20**, as an off-white solid in 96% yield. ¹H NMR (300 MHz, CDCl₃) $\delta = 6.73$ (dd, J = 7.3 Hz, 7.6 Hz, 1H), 6.85 (d, J = 8.6 Hz, 1H), 7.23–7.29 (m, 1H), 7.46–7.51 (m, 4H), 7.75 (d, J = 7.6 Hz, 1H), 7.89–7.92 (m, 1H), 8.08 (m, 2H), 9.60 (bs, 1H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 110.5$, 114.2, 117.5, 122.8, 123.5, 126.5, 126.5, 127.1, 129.1, 130.8, 133.1, 135.5, 136.0, 136.9, 151.2, 174.2.

N-(1-Pyrenyl)anthranilic Acid (23). Amination of 2-chlorobenzoic acid, 1, and 1-aminopyrene, 22, afforded anthranilic acid 23 as an off-white solid in 73% yield. ¹H NMR (300 MHz, DMSO d_6) $\delta = 6.94$ (dd, J = 7.4 Hz, 7.4 Hz, 1H), 7.14 (d, J = 8.3 Hz, 1H), 7.43 (dd, J = 8.0 Hz, 7.4 Hz, 1H), 8.09–8.41 (m, 10H), 10.7 (bs, 1H). ¹³C NMR (75 MHz, DMSO- d_6) $\delta = 114.2$, 118.1, 122.0, 122.1, 124.8, 124.9, 125.4, 125.7, 125.8, 126.4, 126.7, 127.2, 128.0, 128.2, 131.4, 131.7, 133.6, 134.6, 135.2, 148.8, 172.7. Anal. Calcd for C₂₃H₁₅NO₂: C, 81.88; H, 4.48; N, 4.15. Found: C, 81.63; H, 4.74; N, 4.32.

N-(4-Methoxyphenyl)anthranilic Acid (25).¹⁶ Anthranilic acid 25 was obtained from 2-chlorobenzoic acid, 1, and 4-methoxyaniline, 24, as a white powder in 84% yield. ¹H NMR (300 MHz, CDCl₃) δ = 3.83 (s, 3H), 6.68 (dd, *J* = 7.3 Hz, 7.3 Hz, 1H), 6.93 (dd, *J* = 8.6 Hz, 8.6 Hz, 3H), 7.18 (d, *J* = 8.6 Hz, 2H), 7.26–7.32 (m, 1H), 8.0 (d, *J* = 8.6 Hz, 1H), 9.60 (bs, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ = 55.2, 111.4, 112.8, 114.8, 116.3, 125.1, 131.9, 133.0, 134.2, 148.9, 156.1, 170.2.

N-(4-Nitrophenyl)anthranilic Acid (27).¹⁶ Anthranilic acid 27 was produced from 2-chlorobenzoic acid, 1, and 4-nitroaniline, 26, as a yellow solid in 87% yield. ¹H NMR (300 MHz, CD₃OD) δ = 7.22 (dd, *J* = 7.1 Hz, 7.8 Hz, 1H), 7.50 (m, 2H), 7.68–7.78 (m, 2H), 8.26 (d, *J* = 8.1 Hz, 1H), 8.36–8.36 (m, 2H). ¹³C NMR (75 MHz, CD₃OD) δ = 118.1, 118.2, 118.8, 122.2, 127.1, 133.7, 135.3, 142.6, 145.4, 150.0, 171.5.

N-(3-Chlorophenyl)anthranilic Acid (29).²⁸ Amination of 2-chlorobenzoic acid, 1, and 3-chloroaniline, **28**, gave anthranilic acid, **29**, as an off-white solid in 99% yield. ¹H NMR (300 MHz, CDCl₃) $\delta = 6.82$ (dd, J = 7.3 Hz, 7.6 Hz, 1H), 7.08 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 7.8 Hz, 1H), 7.26–7.30 (m, 3H), 7.40 (dd, J = 7.6 Hz, 7.8 Hz, 1H), 8.06 (d, J = 7.3 Hz, 1H), 9.32 (bs, 1H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 114.2$, 114.7, 118.5, 118.8, 119.9, 122.1, 130.9, 132.0, 133.9, 134.0, 142.6, 145.8, 169.9.

N-(4-Carboxyphenyl)anthranilic Acid (31).²⁷ Anthranilic acid 31 was obtained from 2-chlorobenzoic acid, 1, and 4-aminobenzoic acid, 30, using two equivalents of K₂CO₃ as a white solid in 98% yield. ¹H NMR (300 MHz, CD₃OD) δ = 7.00–7.06 (m, 1H), 7.37 (d, *J* = 8.8 Hz, 2H), 7.56–7.59 (m, 2H), 7.98 (d, *J* = 8.8 Hz, 2H), 8.04 (d, *J* = 8.3 Hz, 1H), 9.91 (bs, 1H). ¹³C NMR (75 MHz, CD₃-OD) δ = 115.3, 116.2, 117.9, 119.6, 123.5, 131.2, 132.0, 134.1, 144.6, 145.6, 167.1, 169.7.

N-(4-Methoxyphenyl)-4-nitroanthranilic Acid (33).²⁶ Anthranilic acid 33 was obtained from 2-chloro-4-nitrobenzoic acid, 32, and 4-methoxyaniline, 24, as a yellow solid in 99% yield. ¹H NMR (300 MHz, CD₃OD) δ = 3.98 (s, 3H), 5.07 (bs, 1H), 7.05–7.20 (m, 3H), 7.32 (d, *J* = 8.5 Hz, 2H), 7.40 (d, *J* = 8.8 Hz, 1H), 8.05

⁽²⁴⁾ Graboyes, H.; Anderson, E. L.; Levinson, S. H.; Resnick, T. M. J. Heterocycl. Chem. 1975, 12, 1225–1231.

⁽²⁸⁾ Dheyongera, J. P.; Geldenhuys, W. J.; Dekker, T. G.; Van der Schyf, C. J. *Bioorg. Med. Chem.* **2005**, *13*, 689–698.

(s, 1H). ¹³C NMR (75 MHz, CD₃OD/DMSO- $d_6 = 10:1$) $\delta = 55.0$, 116.1, 116.2, 121.6, 126.7, 126.9, 132.5, 134.4, 135.3, 149.8, 158.6, 170.6.

N-(4-Methoxyphenyl)-4-chloroanthranilic Acid (35).²⁶ Compound 35 was produced from 2,4-dichlorobenzoic acid, 34, and 4-methoxyaniline, 24, as an off-white powder in 86% yield. ¹H NMR (300 MHz, CDCl₃) δ = 3.83 (s, 3H), 6.87 (d, *J* = 9.2 Hz, 1H), 6.92 (d, *J* = 8.9 Hz, 2H), 7.15 (d, *J* = 8.9 Hz, 2H), 7.19–7.24 (m, 1H), 7.95 (d, *J* = 2.5 Hz, 1H), 9.05 (bs, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 56.2, 111.52, 115.4, 121.2, 126.9, 132.1, 133.1, 133.5, 135.5, 149.5, 157.7, 173.1.

N-(4-Methoxyphenyl)-4-bromoanthranilic Acid (37). Amination of 4-bromo-2-chlorobenzoic acid, **36**, and 4-methoxyaniline, **24**, afforded anthranilic acid **37** as an off-white solid in 85% yield. ¹H NMR (300 MHz, CDCl₃) δ = 3.83 (s, 3H), 6.82 (d, *J* = 9.0 Hz, 1H), 6.92 (d, *J* = 8.5 Hz, 2H), 7.15 (d, *J* = 8.5 Hz, 2H), 7.30–7.35 (m, 1H), 8.10 (s, 1H), 9.10 (bs, 1H).¹³C NMR (75 MHz,

DMSO- d_6) $\delta = 55.8$, 113.5, 115.4, 120.1, 125.8, 131.4, 133.3, 133.7, 134.2, 148.3, 157.0, 169.8. Anal. Calcd for C₁₄H₁₂BrNO₃: C, 52.20; H, 3.75; N, 4.35. Found: C, 52.08; H, 3.72; N, 4.78.

Acknowledgment. Funding from the National Science Foundation (CAREER Award, Grant CHE-0347368), the National Institutes of Health (R01 AI060792), and the donors of the Petroleum Research Fund, administered by the American Chemical Society (Grant PRF40897-G4), are gratefully acknowledged.

Supporting Information Available: Single-crystal structures, NMR spectra, and CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0518809